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ABSTRACT 

A comparative study of the use of block-oriented and autoregressive with exogenous inputs 

(ARX) models in the context of robust controller synthesis is presented in this paper. 

Parameters uncertainties of the identified models are taken into account in the synthesis of the 

controllers by state feedback, which aim to assure the maximum attenuation of H2 and H∞ 

costs. The study consists in evaluating the effects of the variation in the models order and 

respective estimated deviation in their parameters in the synthesis of robust controllers. The 

models were obtained from an air heating system with nonlinear dynamics and controllers 

were designed by means of convex optimization procedures in the form of linear matrix 

inequalities. The results obtained point to the preferential use of low order Wiener or 

Hammerstein models, even if they have RMSE and correlation coefficient between simulation 

error and simulated output indexes worse than higher order models.  
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1. INTRODUCTION

Uncertainties are inherent to systems identification, since a 

series of aspects such as variations in parameters, unmodeled 

and/or neglected dynamics, transport delays not included in 

the model, changes in the break-even point (operating point), 

sensor noises and unforeseen disturbance inputs are 

preponderant factors so that the model of the process to be 

controlled is always an inaccurate representation of the real 

physical system [8]. In view of this, it is called robust control 

the area of science responsible for the development of 

techniques of analysis and design of control systems that offer 

guarantees of stability and/or performance against 

uncertainties of the model [19]. 

In the context of control systems, the use of convex 

optimization methods has made Lyapunov's approach to 

stability analysis and controller synthesis for uncertain 

systems even more popular [5]. This methodology uses linear 

representations of the process to be controlled, in the form of 

state space, and performs controller design through linear 

matrix inequalities, aiming to stabilize and/or meet system 

performance requirements throughout the domain of 

uncertainties. 

However, Aguirre [1] states that the dynamical systems 

found in practice are ultimately nonlinear; and that although in 

some cases linear approximations are sufficient to model real 

plants, in many industrial applications linear models are not 

satisfactory and nonlinear representations should be used. 

Linear model structures can be used when physical system 

remains in the vicinity of a nominal operating point, so that 

linearity assumption is satisfied. However, when a wide range 

of operating points is involved, linear assumption may not be 

valid and a nonlinear model structure becomes necessary to 

capture dynamic behavior of the system. In addition, it is 

necessary to consider the energy cost that linear representation 

of the system can cause to the controller [17], as well as the 

influence of such approximation in the dimension of set of 

uncertainties considered, regarding the application of 

techniques of robust control [9]. 

Thus, the following question arises: if non-linear models are 

used in the identification of the process to be controlled, 

making its mathematical representation closer to actual 

behavior of the system, how this better representation reflects 

in performance indexes of the controller to be designed? 

In this sense, the development of robust controllers based 

on Hammerstein models (Figure 1) - which consist of the 

interaction of linear time invariant (LTI) dynamic subsystems 

and static nonlinear elements, being that in this class of models 

static nonlinearity precedes the block linear dynamics - and 

Wiener models - obtained from the permutation of linear and 

nonlinear elements in Hammerstein model, as shown in Figure 

2 - can be seen in [3-4, 11] that demonstrated in their work that 

the representation of non-linear processes through 

Hammerstein and Wiener models for application of robust 

control strategies can reduce the computational complexity in 

comparison to the implementation of conventional robust 

predictive controllers [18]. In this context, this paper presents 

a comparative study of the use of interconnected block models 

and autoregressive linear models with exogenous inputs (ARX) 

for the synthesis of robust controllers. The uncertainties in 

parameters of identified models are taken into account in the 

synthesis of the controllers - projected by means of convex 

optimization procedures in the form of linear matrix 

inequalities - by state feedback, which aim to assure the 
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maximum attenuation of H2 and H∞ costs. 

 

 

Figure 1. Hammerstein model. Source: adapted from Ribeiro 

and Aguirre, 2014, p.617 

 

 

Figure 2. Wiener model. Source: adapted from Ribeiro and 

Aguirre, 2014, p.617 

 

The paper is organized as follows: in the next section, some 

definitions and performance criteria are presented. In turn, 

Section 3 deals with the description of process under study and 

tests carried out, while Section 4 presents the methodology 

used. Section 5 presents the results obtained and, finally, the 

conclusions drawn from the research are presented in Section 

6.  

 

 

2. PRELIMINARIES 
 

Consider a continuous-time system with a (sampled) control 

input 𝑢𝑘 ∈ ℝ
𝑝  and a (sampled) controlled output 𝑦𝑘 ∈ ℝ

𝑞 , 

whose possibly non-linear dynamic is not known. We want to 

represent this system in the form: 

 

𝑥𝑘+1 = 𝐴(𝛽)𝑥𝑘 + 𝐵(𝛽)𝑢𝑘 

𝑦𝑘 = 𝐶(𝛽)𝑥𝑘 + 𝐷(𝛽)𝑢𝑘 
(1) 

 

where 𝑢𝑘 ∈ ℝ
𝑛  is the state vector, and the matrices 𝐴(𝛽) ∈

ℝ𝑛𝑥𝑛 ,  𝐵(𝛽) ∈ ℝ𝑛𝑥𝑝 , 𝐶(𝛽) ∈ ℝ𝑞𝑥𝑛  e 𝐷(𝛽) ∈ ℝ𝑞𝑥𝑝  are not 

precisely known, but belong to a polytopic uncertain domain 

𝒫, such that: 

 

𝒫 =

{
  
 

  
 
(𝐴, 𝐵, 𝐶, 𝐷)(𝛽) ∶  (𝐴, 𝐵, 𝐶, 𝐷)(𝛽) =

∑(𝐴𝑖 , 𝐵𝑖 , 𝐶𝑖, 𝐷𝑖)𝛽𝑖 , 𝛽 ∈ ℝ
𝑁;

𝑁

𝑖=1

∑𝛽𝑖 = 1, 𝛽𝑖 ≥ 0 

𝑁

𝑖=1 }
  
 

  
 

 (2) 

 

where 𝑁 = 2𝑙 is the number of vertices of the polytope, where 

𝑙 is the number of uncertain parameters. 

We investigate in this paper the design of a control law by 

state feedback given by: 

 

𝑢𝑘 = 𝐾𝑥𝑘 (3) 

 

with 𝐾 ∈ ℝ1𝑥𝑛 that robustly stabilizes the system described 

by (1) for all 𝛽 ∈ 𝒫, according to the following criteria. 

 

2.1 H2 guaranteed cost 

 

Consider the system given by (1). The transfer function that 

relates external perturbation, 𝑤𝑘, to the output of interest, 𝑦𝑘 , 

is given by: 

 

𝐺𝑤𝑦(𝑧) = 𝐶(𝑧𝐼 − 𝐴)−1𝐵𝑤 + 𝐷𝑤 (4) 

H2 norm of 𝐺𝑤𝑦(𝑧) is defined as (de Oliveira et al., 2004): 

 

‖𝐺𝑤𝑦(𝑧)‖2 =
1

2𝜋
∫ 𝑇𝑟{[𝐺𝑤𝑦(𝑒

𝑗𝜔)]
∗
[𝐺𝑤𝑦(𝑒

𝑗𝜔)]}𝑑𝜔
𝜋

−𝜋

 (5) 

 

Minimizing H2 norm of a 𝐺𝑤𝑧(𝑠) system effectively means 

minimizing the amount of energy that is transferred from 

exogenous input, 𝑤, to the output of interest, 𝑧, attenuating the 

influence of measurement noise and external disturbances on 

system response. 

De Oliveira et al. [6] present linear matrix inequalities for 

computation of H2  guaranteed cost through Lyapunov 

functions dependent on parameters for discrete-time uncertain 

systems, from which are derived the synthesis conditions used 

in this paper, presented below. 

Lemma 2.1 [6]. If there exist symmetric positive matrices 

𝑊𝑖 ∈ ℝ
𝑛×𝑛, 𝑖 = 1,… , 𝑁, matrices 𝐻 ∈ ℝ𝑝×𝑛, 𝐽 ∈ ℝ𝑛×𝑛 and a 

symmetric positive matrix 𝑋 ∈ ℝ𝑝×𝑝 such that: 

 

[
−𝑋 + 𝐶𝑖𝐻

′ +𝐻𝐶𝑖′ −𝐻 + 𝐶𝑖𝐽′

−𝐻′ + 𝐽𝐶𝑖′ 𝑊𝑖 − (𝐽 + 𝐽
′)
] ≤ 0, (6) 

 

then: 

 

𝐶(𝛼)𝑊(𝛼)𝐶(𝛼)′ ≤ 𝑋 (7) 

 

is verified with 𝑊(𝛼) = 𝑊(𝛼)′ > 0 given by: 

 

𝑊(𝛼) =∑𝛼𝑖𝑊𝑖

𝑁

𝑖=1

;  𝛼𝑖 ≥ 0; 

𝑖 = 1,… , 𝑁; ∑𝛼𝑖

𝑁

𝑖=1

= 1 

(8) 

 

Lemma 2.2 [6]. If there exist symmetric positive definite 

matrices 𝑊𝑖 ∈ ℝ
𝑛×𝑛 , 𝑖 = 1,… , 𝑁 , matrices 𝑄 ∈ ℝ𝑛×𝑛  and 

𝐿 ∈ ℝ𝑛×𝑛 such that: 

 

[

−𝑊𝑖 𝐴𝑖𝐿 + 𝐵𝑖𝑍 𝐵𝑤𝑖
𝐿′𝐴𝑖′ + 𝑍

′𝐵𝑖 ′ 𝑊𝑖 − (𝐿 + 𝐿
′) 0

𝐵𝑤𝑖′ 0 −𝐼
] ≤ 0; 

 𝑖 = 1, … , 𝑁 

(9) 

 

then: 

 

 𝐴(𝛼)𝑊(𝛼)𝐴(𝛼)′ −𝑊(𝛼)𝐵(𝛼)𝐵(𝛼)′ ≤ 0 (10) 

 

is verified with 𝑊(𝛼) = 𝑊(𝛼)′ > 0 given by (8). 

The gain of robust state feedback is given by 𝐾 = 𝑍𝐿−1. If 

conditions of Lemmas 2.1 and 2.2 are satisfied, the optimal H2 

guaranteed cost, ρ, for an uncertain system with 

(𝐴(𝛼), 𝐵(𝛼), 𝐶(𝛼)) ∈ 𝒫 is given by the solution of: 

 

𝜌 = √min (𝑡𝑟𝑎𝑐𝑒(𝑋)) 
 

(11) 

 

2.2 H∞ guaranteed cost 

 

Consider the system (1) again. H∞  norm of the transfer 

function, 𝐺𝑤𝑦(𝑧), which relates external perturbation, 𝑤𝑘, to 

the output of interest, 𝑦𝑘 , is given by: 
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‖𝐺𝑤𝑦(𝑧)‖∞ = sup𝜔𝜖ℝ
𝜎𝑚𝑎𝑥[𝐺𝑤𝑦(𝑒

𝑗𝜔)] (12) 

  

According to Zhou and Doyle [18], H∞ norm is related to 

greater gain that can exist between exogenous inputs and the 

system outputs, throughout the spectrum of signals, that is, it 

quantifies the greater increase of energy that can occur 

between the inputs and outputs of a given system. Silva [13] 

reiterates that, for SISO uncertain systems, H∞  norm 

corresponds to the maximum value of Bode magnitude 

diagram of the set of uncertainties. Therefore, minimizing H∞ 

norm of 𝐺𝑤𝑧(𝑠) means minimizing the greater gain that can 

exist between the disturbance input and the system output, 

attenuating the effect of 𝑤𝑘 on 𝑦𝑘 .   

De Oliveira et al. [6] present in their paper LMIs that 

perform H∞ guaranteed cost computation through parameter 

dependent Lyapunov functions for discrete-time uncertain 

systems, from which synthesis conditions used herein are 

derived. 

Lemma 2.3 [6]. If there exist symmetric positive definite 

matrices 𝑃𝑖 ∈ ℝ
𝑛×𝑛, 𝑖 = 1,… , 𝑁, matrices 𝐹 ∈ ℝ𝑛×𝑛 and 𝐺 ∈

ℝ𝑛×𝑛 such that: 

 

[
 
 
 
 

𝑃𝑖 𝐴𝑖𝐺 + 𝐵𝑖𝑍 0 𝐵𝑤𝑖
𝐺′𝐴𝑖′ + 𝐺

′𝑍′ 𝐺 + 𝐺′ − 𝑃𝑖 𝐺′𝐶𝑖′ 0
0 𝐶𝑖𝐺 𝐼 𝐷𝑖
𝐵𝑤𝑖′ 0 𝐷𝑖 ′ 𝜇𝐷𝐼]

 
 
 
 

> 0; 

𝑖 = 1,… , 𝑁 

 

(13) 

then: 

 

[
Ξ 𝐴(𝛼)′𝑃(𝛼)𝐵(𝛼) − 𝜍2𝐶(𝛼)′𝐷(𝛼)

⋆ 𝐼 − 𝐵(𝛼)′𝑃(𝛼)𝐵(𝛼) − 𝜍2𝐷(𝛼)′𝐷(𝛼)
] > 0, (14) 

  

where Ξ ≜ 𝑃(𝛼) − 𝐴(𝛼)′𝑃(𝛼)𝐴(𝛼) − 𝜍2𝐶(𝛼)′𝐶(𝛼)  and ⋆ 

represents symmetrical blocks, is verified with 𝑃(𝛼) =
𝑃(𝛼)′ > 0 given by (8), with 𝑊 replaced by 𝑃. 

The gain of robust state feedback is given by 𝐾 = 𝑍𝐿−1. If 

conditions of Lemma 2.3 are satisfied, optimal H∞ guaranteed 

cost, ρ, for an uncertain system with (𝐴(𝛼), 𝐵(𝛼), 𝐶(𝛼)) ∈ 𝒫 

is given by the solution of: 

 

ϛ = √min (𝜇𝐷) (15) 

 

 

3. SYSTEM DESCRIPTION 

 

The modeling plant consists of an electric oven located in 

Signals and Systems Laboratory of Centro Federal de 

Educação Tecnológica de Minas Gerais (CEFET-MG) - 

Campus Divinópolis, designed and developed by Franco [10]. 

The furnace, shown in Figure 3, presents external and 

internal structures of dimensions 150x150x1000mm and 

120x120x1000mm, respectively, both in aluminum. 

According to Franco [10], the space between the inner and 

outer walls is filled with expanded polyurethane, providing 

thermal insulation between the interior and exterior of the 

prototype, which makes it robust to abrupt variations in the 

temperature of external environment. 

Internally, the oven is divided into eight chambers. In the 

first, there is an axial fan, actuator responsible for propelling 

the external air through the interior of the furnace, and a 

temperature sensor LM35, also present in the chambers 3, 5 

and 7, in order to acquire the temperature in each one from 

them. In addition, another LM35 sensor is disposed next to the 

data acquisition board, in order to measure the temperature of 

external environment to the prototype. In turn, chambers 2, 4 

and 6 have a 150W halogen bulb each, fed with a variable 

voltage from 0 to 220Vac, in order to heat the airflow inside 

the prototype. The chamber 8 is intended for exhaustion and 

through it the air is expelled, returning to the external 

environment. In order to work with a SISO system, only one 

input - LM35 sensor located in chamber 7 - and one halogen 

lamp output located in chamber 2 - will be considered in the 

system. The other lamps are kept off and the axial fan is driven 

at constant voltage equal to 80% of its nominal. 

 

 
 

Figure 3. Prototype overview. Source: Franco, 2013, p. 8 

 

The use of this plant is of interest due to the similarity of its 

dynamic behavior with that of industrial systems of great 

economic and environmental impact, such as furnaces found, 

for example, in metallurgical processes. 

 

 

4. METODOLOGY 

 

The topology detection of the purely linear models and 

linear plots of block-oriented models considered here is 

limited to defining the maximum input delays, 𝑛𝑢, and output, 

𝑛𝑦. Since one of the objectives of this paper is to evaluate the 

relationship between the identified models complexity and the 

designed controllers efficiency, it will be obtained for each 

class of models considered, in order to compare them, low 

order models: one of first order (𝑛𝑢 = 𝑛𝑦 = 1), two of second 

order (𝑛𝑦 = 2, 𝑛𝑢 = 1 and 𝑛𝑢 = 𝑛𝑦 = 2), three of third order 

(𝑛𝑦 = 3, 𝑛𝑢 = 1; 𝑛𝑦 = 3, 𝑛𝑢 = 2 and 𝑛𝑢 = 𝑛𝑦 = 3) and four 

of fourth order (𝑛𝑦 = 4 , 𝑛𝑢 = 1; 𝑛𝑦 = 4, 𝑛𝑢 = 2; 𝑛𝑦 = 4, 

𝑛𝑢 = 3  e 𝑛𝑢 = 𝑛𝑦 = 4 ), where 𝑛𝑦  and 𝑛𝑢 , represent the 

number of output and input terms added to the model, 

respectively; as well as a high-order model, limiting the 

maximum input and output delays to 15 and using Error 

Reduction Rate (ERR) and Akaike Information Criterion (AIC) 

to identify which of the terms generated are, in fact, relevant 

to the system representation  

After the structure detection stage, the next step in the 

process of identifying the plant under study is to estimate the 

parameters associated with each regressor in order to quantify 

them. This step starts with the choice of algorithm to be used. 

In order to avoid the polarization of the estimated parameters, 

the technique used in this paper is the extended least squares 

estimator. 

Validation is the final procedure of the system identification 
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and aims to verify if the models obtained are able to adequately 

represent the interest characteristics of modeled plant. 

Quantitative validation of the models performance is based on 

two indices: RMSE and correlation coefficient between 

simulation error and simulated output. The first one compares 

the predicted output of the model, or prediction, with the mean 

time of the system output signal, as follows: 

 

𝑅𝑀𝑆𝐸 =
√∑ [𝑦𝑘 − 𝑦�̂�]

2𝑁
𝑘=1

√∑ [𝑦𝑘 − �̅�]
2𝑁

𝑘=1

 (16) 

  

where 𝑦�̂� is free simulation of the model output and �̅� is the 

mean value of system output signal. In turn, the performance 

index J(�̂�) is correlation index between simulation error and 

simulated output for a set of estimated parameters, given by: 

 

𝐽(�̂�) = ∑𝑦𝑖,𝑘𝑦�̂� + 𝑒𝑘𝑦�̂� − 𝑦�̂�
2

𝑁

𝑘=1

 (17) 

  

where N is the number of samples for time series used, 𝑦𝑖,𝑘 is 

ideal portion of validation data, 𝑦�̂�  is free simulation of 

obtained model and 𝑒𝑘  represents the additive noise or any 

associated uncertainty. For each order and class of models 

considered, the twenty models with the lowest RMSE index 

were selected and, among them, the one with the lowest 

correlation coefficient between the simulation error and the 

simulated output was chosen. 

 

4.1.1 Purely linear models 

 

Figure 4 shows RMSE and correlation coefficient between 

simulation error and simulated output indexes obtained by 

purely linear models identified. Note that the two indices are 

at first glance conflicting. This is due to the purpose with 

which each of them was used in selection of the models. 

Barroso [2] points out that RMSE index can lead to unreliable 

results if data collected have a significant noise-to-signal ratio. 

Correlation coefficient, although robust to noise, can provide 

false positive in cases of unstable models. Therefore, RMSE 

index was used in this paper to detect stability, that is, stable 

models. Among those selected, the one with the lowest 

correlation between simulation error and simulated output will 

be the one that presents parameters closer to the actual values 

and will therefore be the best model. 

Thus, from Figure 4, by the analysis of correlation 

coefficient, it is inferred the model that best and worst fit the 

data are, respectively, the third order with two input regressors 

and the second order with an input regressor. 

 

4.1.2 Hammerstein models 

 

Figure 5 shows RMSE and correlation coefficient between 

simulation error and simulated output indexes obtained by 

Hammerstein models identified. From the observation of 

correlation coefficients obtained, it can be seen the model that 

best fits the data is the first order one. It should be noted that 

since the structure of low order models was defined a priori, 

without use of any structure detection tool, such models may 

contain spurious regressors, that is, terms that are not really 

necessary to compose the model, which results in a worse 

adjustment of the model to the data. In turn, the high 

correlation coefficient obtained by the fourteenth order model 

is explained by the fact that complex, over-adjusted models, 

such as the one cited, tend to model the noise present in the 

data, which is undesirable. 

 

 
 

Figure 4. RMSE and correlation coefficient indexes obtained by purely linear models identified 
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Figure 5. RMSE and correlation coefficient indexes obtained by Hammerstein models identified 
 

 
 

Figure 6. RMSE and correlation coefficient indexes obtained by Wiener models identified 

 

4.1.3 Wiener models 

 

Figure 6 shows RMSE and correlation coefficient between 

simulation error and simulated output indexes obtained by 

identified Wiener models. From the observation of correlation 

coefficients obtained, it can be seen the models that best and 

worst fit the data are, respectively, the third order with two 

input regressors and the second order with an input regressor. 

26



 

4.1.4 Comparative analysis of identified models  

 

Based on correlation coefficients between simulation error 

and simulated output obtained, it is inferred that, in general, 

Hammerstein and Wiener models represented the plant under 

study better than purely linear models. This result was 

expected, since the system in question presents non-linear 

characteristics, among which we highlight the presence of 

distinct heating and cooling time constants, evidencing 

bilinear behavior, as well as a highly nonlinear heat transfer 

mechanism by thermal radiation that takes place inside the 

oven. 

However, Figure 7 shows that block-oriented models ability 

to represent the system more accurately when compared to 

purely linear models is not translated into smaller standard 

deviations of parameters estimated for those models and, 

consequently, in reducing the domain of uncertainties 

considered in the design of controllers. In this paper, the 

uncertainty corresponding to each parameter determined in the 

system identification is measured from the standard deviation 

associated with it, that is, it is considered that the value of each 

uncertain parameter of model 𝑎𝑖  is restricted to the range 

[𝑎𝑖 , 𝑎𝑖] , where 𝑎𝑖  is the minimum value assumed by the 

respective parameter, given by 𝑎𝑖 = 𝑎𝑖𝑁 − 𝜎𝑖; 𝑎𝑖𝑁  represents 

the estimated nominal value of the parameter and 𝜎𝑖  is the 

standard deviation associated with it , while 𝑎𝑖  is the 

maximum value assumed by 𝑎𝑖, given by 𝑎𝑖  = 𝑎𝑖𝑁 + 𝜎𝑖. The 

sum of the uncertainties considered for identified models is 

carried out from pre-established limits of their parameters, 

taking the difference between the upper and lower constraints 

for each estimated parameter. Note that, in general, estimated 

parameters for Hammerstein and Wiener models are as 

uncertain as those of purely linear models, except for the 

fourth order linear model with two input regressors, which, 

possibly because they contain spurious terms, presented 

estimated parameters with standard deviations far superior to 

the others. 

 

 
 

Figure 7. Sum of the uncertainties of the identified models 

 

 

5. RESULTS AND DISCUSSIONS 

 

5.1 H2 cost 

 

Figure 8 illustrates H2 costs obtained by controllers 

designed based on Hammerstein, Wiener and linear models 

identified in controllable canonical form. It can be seen that H2 

costs obtained by the controllers designed based on block-

oriented models, especially in Wiener models, are 

considerably smaller than those obtained by purely linear 

models. In addition, it can be observed that second-order 

models with an input regressor were those that obtained the 

lowest H2 cost and that, in general, the more input regressors 

added to the model, the higher the H2 cost of the compensated 

system. Finally, it is important to note that the infeasibility 

index in the controllable form was low, occurring only in the 

high order models and in the fourth order linear model with 

two input terms. 

Figure 9 shows H2 costs obtained by the controllers 

designed based on the Hammerstein, Wiener and purely linear 

models identified in observable canonical form. The 

occurrence of infeasibility increases substantially in 

observable form, especially as the order and the number of 

regressors added to the model increase. In addition, comparing 

Figures 8 and 9, it can be observed that in cases where LMI is 

feasible, H2 costs obtained in the controllable and observable 
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forms are very close or even equal. It is also observed that in 

the observable form the occurrence of infeasibility is lower in 

purely linear models than in block-oriented models. 

Finally, Figure 10 shows the sum of the uncertainties and 

H2 costs obtained by Wiener models identified in controllable 

canonical form. It can be seen that the H2 cost is dependent on 

the set of uncertainties considered; note that the upward trend 

of H2 cost in fourth-order models is broken by the model with 

two input regressors, which presents a sum of uncertainties 

considerably larger than the others.  

 

 
 

Figure 8. H2 costs obtained by controllers designed based on Hammerstein, Wiener and purely linear models identified in 

controllable canonical form 

 

 
 

Figure 9. H2 costs obtained by controllers designed based on Hammerstein, Wiener and purely linear models identified in 

observable canonical form 
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Figure 10. Influence of the set of uncertainties considered in H2 guaranteed cost calculation 

 

H2 cost is therefore dependent on four factors, namely, the 

type of model used in the system identification: block-oriented 

models, especially Wiener models, presented a lower H2 cost 

when compared to purely linear models; order: second order 

models were those that presented lower H2 cost, corroborating 

the principle of parsimony, which states that between two or 

more candidate models effective in relation to the 

representation of the system dynamics, one must choose the 

model with the lowest number of independent parameters 

(Söderström and Stoica, 1989); number of input regressors 

added to the model: in general, the more input terms the higher 

H2 cost obtained; and the sum of uncertainties: more uncertain 

systems tend to present higher H2 cost. Furthermore, in this 

case, the controllable canonical form was more adequate than 

the observable form, since the infeasibility index was 

considerably lower in the first one. 

 

5.2 H∞ cost 

 

 
Figure 11. H∞ costs obtained by controllers designed based on Hammerstein, Wiener and purely linear models identified in 

controllable canonical form 
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Figure 12. H∞ costs obtained by controllers designed based on Hammerstein, Wiener and purely linear models identified in 

observable canonical form 

 

Figure 11 illustrates H∞ costs obtained by controllers 

designed based on Hammerstein, Wiener and purely linear 

models identified in controllable canonical form. Note that the 

characteristics of H∞ cost, even with respect to values, are very 

similar to those of H2 cost: H∞ costs obtained by the controllers 

designed based on the block-oriented models, especially in 

Wiener models, are significantly lower than those obtained by 

purely linear models; the second-order models with an input 

regressor were the ones that obtained the lowest H∞ cost and, 

generally, the more input regressors added to the model, the 

higher H∞ cost of compensated system. 

Notice now Figure 12, which shows H∞ costs obtained by 

controllers designed based on Hammerstein, Wiener and 

purely linear models identified in observable canonical form. 

Again, similar to H2 cost, the occurrence of infeasibility – 

which in controllable form was low, occurring only in high 

order models and in the fourth order linear model with two 

input terms – increases considerably in observable form, 

especially as the order and the number of regressors added to 

the model increase. 

 

 

 
Figure 13. Influence of the set of uncertainties considered in H∞ guaranteed cost calculation 
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Finally, Figure 13 shows the sum of the uncertainties and 

H∞ costs obtained by purely linear models identified in 

controllable canonical form. Here we also observe the 

influence of the set of uncertainties considered in H∞ 

guaranteed cost statement; note that the impossibility of 

designing a controller capable of guaranteeing the stability of 

the system represented by the purely linear fourth-order model 

with two input terms with the lowest guaranteed H∞ cost is due 

to the size of the domain of uncertainties considered, 

substantially larger than the others. 

Thus, it is possible to state that H∞ cost, as well as H2 cost, 

depends on the type of model used in the system identification, 

since block-oriented models, especially Wiener models, 

presented lower H∞ cost when compared to purely linear 

models; of the order, since the models of second order were 

the ones that presented lower H∞ cost; of the number of input 

terms added to the model, since, in general, the more input 

regressors the greater H∞ cost obtained; and the sum of the 

uncertainties: more uncertain systems tend to present a higher 

H∞ cost, and even if the domain of uncertainties considered is 

too large, the LMI is infeasible, as in the case of the purely 

linear fourth-order model with two terms of input. In addition, 

also for computation of e minimal H∞ cost, controllable 

canonical form was more adequate than the observable one, 

since the occurrence of infeasibility was considerably greater 

in this form than in that one. 

 

 

6. CONCLUSION 

 

In this paper, it was verified that the performance of block-

oriented models, especially Wiener model, was much superior 

to the purely linear models, with respect to the H2 and H∞ costs. 

It was also observed that the use of Hammerstein and Wiener 

models in the identification of systems for the design of robust 

controllers can achieve better performance if the models used 

have low orders, even if this represents larger identification 

errors. 

For the system in question, controllable canonical form was 

more adequate than observable form, since the occurrence of 

infeasibility was considerably lower in the first one for all 

LMIs considered here. 
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